skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beldade, Ricardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mutualism between clownfishes (or anemonefishes) and their giant host sea anemones are among the most immediately recognizable animal interactions on the planet and have attracted a great deal of popular and scientific attention [1-5]. However, our evolutionary understanding of this iconic symbiosis comes almost entirely from studies on clownfishes— a charismatic group of 28 described species in the genusAmphiprion[2]. Adaptation to venomous sea anemones (Anthozoa: Actiniaria) provided clownfishes with novel habitat space, ultimately triggering the adaptive radiation of the group [2]. Clownfishes diverged from their free-living ancestors 25-30 MYA with their adaptive radiation to sea anemones dating to 13.2 MYA [2, 3]. Far from being mere habitat space, the host sea anemones also receive substantial benefits from hosting clownfishes, making the mutualistic and co-dependent nature of the symbiosis well established [4, 5]. Yet the evolutionary consequences of mutualism with clownfishes have remained a mystery from the host perspective. Here we use bait-capture sequencing to fully resolve the evolutionary relationships among the 10 nominal species of clownfish-hosting sea anemones for the first time (Figure 1). Using time-calibrated divergence dating analyses we calculate divergence times of less than 25 MYA for each host species, with 9 of 10 host species having divergence times within the last 13 MYA (Figure 1). The clownfish-hosting sea anemones thus diversified coincidently with clownfishes, potentially facilitating the clownfish adaptive radiation, and providing the first strong evidence for co-evolutionary patterns in this iconic partnership. 
    more » « less
  2. ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026